乐愚社区Beta

 Python  >  Python 数据分析(四):Pandas 进阶

Python 数据分析(四):Pandas 进阶

旁观者  L21  • 2021-03-07 • 回复 0 • 只看楼主举报    

1. 概述

我们在上一篇文章初识 Pandas中已经对 Pandas 作了一些基本介绍,本文我们进一步来学习 Pandas 的一些使用。

2. 缺失项

在现实中我们获取到的数据有时会存在缺失项问题,对于这样的数据,我们通常需要做一些基本处理,下面我们通过示例来看一下。

import numpy as npfrom pandas import Series, DataFrame
s = Series(['1', '2', np.nan, '3'])df = DataFrame([['1', '2'], ['3', np.nan], [np.nan, 4]])print(s)print(df)# 清除缺失项print(s.dropna())print(df.dropna())# 填充缺失项print(df.fillna('9'))print(df.fillna({0:'5', 1:'6'}))

3. 分组聚合

我们通过示例来了解一下分组、聚合操作。

from pandas import DataFrame
df = DataFrame({'name':['张三', '李四', '王五', '赵六'], 'gender':['男', '女', '男', '女'], 'age':[22, 11, 22, 33]})# 根据 age 分组gp1 = df.groupby('age')# 根据 age、gender 分组gp2 = df.groupby(['age', 'gender'])# 根据 gender 进行分组,将 name 作为分组的键gp3 = df['gender'].groupby(df['name'])# 查看分组print(gp2.groups)# 分组数量print(gp2.count())# 选择分组print(gp2.get_group((22, '男')))print('---------')# 聚合gp4 = df.groupby(df['gender'])# 和print(gp4.sum())# 平均值print(gp4.mean())# 最大值print(gp4.max())# 最小值print(gp4.min())# 同时做多个聚合运算print(gp4.agg(['sum', 'mean']))

4. 数据合并

Pandas 具有高性能内存中连接操作,与 SQL 相似,它提供了 merge() 函数作为 DataFrame 对象之间连接操作的入口,我们通过示例来看一下。

from pandas import DataFrameimport pandas as pd
df1 = DataFrame({'A':[2, 4, 5], 'B':[1, 2, 3], 'C':[2, 3, 6]})df2 = DataFrame({'D':[1, 3, 6], 'E':[2, 5, 7], 'F':[3, 6, 8]})df3 = DataFrame({'G':[2, 3, 6], 'H':[3, 5, 7], 'I':[4, 6, 8]})df4 = DataFrame({'G':[1, 3, 5], 'H':[4, 6, 8], 'I':[5, 7, 9]})# 左连接(以 d1 为基础)print(df1.join(df2, how='left'))# 右连接print(df1.join(df2, how='right'))# 外连接print(df1.join(df2, how='outer'))# 合并多个 DataFrameprint(df3.join([df1, df2]))# 指定列名进行合并print(pd.merge(df3, df4, on='G'))print(pd.merge(df3, df4, on=['G', 'H']))print(pd.merge(df3, df4, how='left'))print(pd.merge(df3, df4, how='right'))print(pd.merge(df3, df4, how='outer'))

5. 数据可视化

Pandas 的 Series 和 DataFrame 的绘图功能是包装了 matplotlib 库的 plot() 方法实现的,下面我们通过示例来看一下。

5.1 折线图

折线图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame(np.random.randn(10,2), columns=list('AB'))df.plot()plt.show()

看一下效果: 

5.2 条形图

纵置条形图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame(np.random.rand(5,3), columns=list('ABC'))df.plot.bar()plt.show()

看一下效果:

横置条形图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame(np.random.rand(5,3), columns=list('ABC'))df.plot.barh()plt.show()

看一下效果: 

5.3 直方图

直方图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame({'A':np.random.randn(800)+1, 'B':np.random.randn(800)}, columns=list('AB'))df.plot.hist(bins=10)plt.show()

看一下效果: 

我们还可以将 A、B 分开显示,代码实现如下:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame({'A':np.random.randn(800)+1, 'B':np.random.randn(800)}, columns=list('AB'))df.hist(bins=10)plt.show()

看一下效果: 

5.4 散点图

散点图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame(np.random.rand(20, 2), columns=list('AB'))df.plot.scatter(x='A', y='B')plt.show()

看一下效果: 

5.5 饼图

饼图代码实现如下所示:

import pandas as pd, numpy as np, matplotlib.pyplot as plt
df = pd.DataFrame([30, 20, 50], index=list('ABC'), columns=[''])df.plot.pie(subplots=True)plt.show()

看一下效果:


还没注册帐号?快来注册社区帐号,和我们一起嗨起来!
关于本社区

集各类兴趣爱好于一身的轻量化交流社区,在此您可以和他人一起分享交流您觉得有价值的内容,社区鼓励大家发表原创内容,为社区添砖加瓦!

发帖奖励 → 社区版规 → 招聘版主 →
推荐版块
扫描二维码下载社区APP
回到顶部